

Device Challenges and Opportunities

Prof. Tsu-Jae King Liu

Electrical Engineering and Computer Sciences Department University of California at Berkeley

March 24, 2016

DOE Workshop on Energy Efficient Electronics

Improving CMOS Energy Efficiency

- To reduce power consumption, the chip operating voltage must be reduced – but this results in slower circuit operation.
- → Parallelism (multi-core processing) is used today to improve system throughput, within power constraints.

Game Over for CMOS

• When each core operates at the minimum energy, increasing chip performance requires more power.

• The energy-delay tradeoff for a CMOS logic circuit can be understood by considering a cascade of inverters:

Fig. 1.2 Inverter-based model for combinational logic energy and performance. E. Alon, Ch.1, CMOS and Beyond: Logic Switches for Terascale Integrated Circuits, Cambridge University Press, 2015.

 The clock frequency of the microprocessor is limited by the delay of the combinational logic between the clocked registers.
L_d stages, only 1 actively switching at a time (the other stages are static)

CMOS Energy per Operation

New Logic Switch Requirement

- Higher I_{ON}/I_{OFF} → lower Energy/op
- \rightarrow Much steeper switching behavior is needed!

Approaches to Facilitate Voltage Scaling

 To operate with lower V_{DD} without sacrificing circuit performance (*i.e.* maintaining high ON-state current) for a given I_{OFF} specification, the MOSFET ON/OFF current ratio must be improved:

3-D Transistor ("Tri-gate" or "FinFET")

- Superior gate control
- \rightarrow steeper switching
- → Lower V_{DD} for target I_{ON}
- Multiple fins can be connected in parallel to achieve higher drive current.

Advanced Channel Materials

- High-mobility semiconductor materials potentially can provide for improved performance:
 - Ge for PMOS
 - (In)GaAs for NMOS

	Si	Ge	GaAs
Electron mobility (cm ² /Vs)	1500	3900	8500
Hole mobility (cm²/Vs)	450	1900	400
Lattice constant (Å)	5.431	5.646	5.653
Band gap (eV)	1.12	0.66	1.424
Dielectric constant	12	16	13

• Selective epitaxial growth directly on Si is facilitated by the use of a corrugated substrate:

J.-S. Park et al., Appl. Phys. Lett. 90 052113, 2007

J. Z. Li et al., Appl. Phys. Lett. 91 021114, 2007

Heterogeneous CMOS Integration

M. Heyns (IMEC), EuroNanoForum 2013

Demonstration of CMOS Ge/InP virtual substrate by ART (Aspect Ratio Trapping)

Remaining Issues with ART

N. Waldron (IMEC), ISTDM 2012

"Perpendicular" view

Efficient defect necking effect

Effective double step formation on the "rounded-Ge" surface

APB observed only with an almost flat Ge surface

"Parallel" view

High defect density in parallel view

twins/Stacking Faults/APBs

APBs originate from single steps along [110]?

Challenges for FinFET Architecture

N. Waldron (IMEC), ISTDM 2012

Si vs. In_{0.7}Ga_{0.3}As FinFETs

N. Xu (UC Berkeley), unpublished

- Narrower fin width is required for InGaAs FinFET vs. Si FinFET
- V_{TH} is more sensitive to W_{fin} for InGaAs FinFETs

Outlook for III-V MOSFETs

courtesy V. Moroz (Synopsys, Inc.)

- Any new technology should last for at least 2 technology nodes
- Si_{1-x}Ge_x channel is easier to manufacture

→ III-V channel materials have a narrow window of opportunity (?)

Sources of Variability

- Sub-wavelength lithography:
 - Resolution enhancement techniques are costly and increase process sensitivity

Layout-dependent transistor performance:

courtesy Mike Rieger (Synopsys, Inc.)

- Process-induced stress is dependent on layout
- Random dopant fluctuations (RDF):
 - Atomistic effects become significant in nanoscale FETs

A. Brown et al., IEEE Trans. Nanotechnology, p. 195, 2002

Impact of Misalignment

6-T SRAM Cell

PG

BLB

PD

Actual layout w/ vertical misalignment (channel width variations due to active jogs)

Impact of Variability on SRAM

• V_{TH} mismatch results in reduced static noise margin. \rightarrow lowers cell yield, and limits V_{DD} scaling

Y. Tsukamoto et al., Proc. IEEE/ACM ICCAD, p. 398, 2005

→Immunity to short-channel effects (SCE) and narrow-width effects as well as RDF effects is needed to achieve high SRAM cell yield.

Double Patterning of Gate

6-T SRAM Cell

PG

BLB

Future Device Requirements

- Low operating voltage \rightarrow Low active power
- Robust to variations

• Zero leakage

- \rightarrow Low cost
 - \rightarrow Zero standby power

Micro-Electro-Mechanical Switch

OFF State:

- Zero OFF-state current (I_{OFF}); abrupt switching
 - Turns on by electrostatic force (F_{elec}) when $|V_{GS}| \ge V_{Pl}$
 - Turns off by spring restoring force (F_{spring}) when $|V_{GS}| \leq V_{RL}$

Surface Micromachining Process

Cross-sectional View

- Mechanical structures can be made using conventional microfabrication techniques
- Structures are freed by selective removal of sacrificial layer(s)

Relay Design for Digital Logic

Logic Relay Structure & Operation

NEM Relay Switching Energy-Delay

C. Qian et al., 2015 International Electron Devices Meeting (Paper 18.1)

IC Technology Advancement

- Advanced back-end-of-line (BEOL) processes have air-gapped interconnects
- \rightarrow can be adapted for fabrication of compact NEMS!

D. C. Edelstein, 214th ECS Meeting, Abstract #2073, 2008

BEOL NEM Switch

N. Xu et al. (UC Berkeley), 2014 IEEE International Electron Devices Meeting

courtesy of Dr. Kimihiko Kato (UC Berkeley)

 A relay can be implemented using multiple metal layers

Vias can be used for electrical connection and as torsional elements for lower k_{eff}

- Actuation electrodes on opposite sides of movable electrode structure
 - → 2 stable states (contacting D0 or D1)
- Low-voltage (<1 V) operation can be achieved with small footprint (< 0.1 μm²).

Non-Volatile NEMory Cell Structure

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

In-Memory Computing

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

• NV-NEMory cell array for memory-based super-parallel data searching

Data Search Step 1: Match "0"

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

Reference Data: 1100

Data Search Step 2: Match "1"

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

Reference Data: 1100

Energy and Delay for Data Search

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

Energy Delay 1 column 1 column 256 columns **Cells involved:** \times 256 rows \times 256 rows × 1 row Program ($V_{\rm prog} = 2.5 \, \rm V$) < 10 ns N/A 15 fJ 2.0 pJ Match "0" or Match "1" N/A 1.2 pJ < 0.2 nsN/A

256 × 256 NV-NEMory Array

- The location of a data string can be found in <0.5 ns with less than 2.5 pJ.
- → For a die size of 42 mm² (same as DDR4 DRAM) at F = 20 nm and cell density of 65% (similar to DRAM), a NV-NEMory chip would have the capacity 8 Gb and would consume only 300 nJ to find a match on the whole chip.
- \rightarrow In comparison, it would take CPU+DRAM ~90 mJ, 80 ms for the same task.

Relatively fast read speed & low power consumption make NV-NEMory technology well-suited for real-time data searching applications!

Summary

- <u>Challenges</u>:
 - CMOS technology has a fundamental limit in energy efficiency, due to non-zero transistor OFF-state current.
 - \rightarrow New logic switch designs are needed to overcome this limit!
 - Steeply switching with zero I_{OFF}
 - Robust to process-induced variations
- **Opportunities**:
 - 2-D semiconductor materials, negative capacitance FETs, ...
 - Semiconductor device designs which do not utilize doping
 - Nanomanufacturing innovations to lower cost per function
 - Collaboration across domains of expertise to co-optimize device technology, circuit/system architecture, algorithms
 - Examples: Reconfigurable specializers, communication-avoiding and write-avoiding algorithms

Cell-Level Comparison of Emerging NVM Technologies

K. Kato et al., IEEE Electron Device Letters, Vol. 37, pp. 31-34, 2016

	NAND Flash	РСМ	Redox RRAM	STT- MRAM	NV- NEMory	Stand alone DRAM
Cell area	$2.5F^{2}$	6 <i>F</i> ²	5-8 <i>F</i> ²	$20-40F^2$	8 <i>F</i> ²	6 <i>F</i> ²
Program voltage	18-20 V	3 V	0.5 V	1.8 V	$\sim 2 V$	1.5 V
Program time	> 10 µs	50 ns	5 ns	100 ns	< 10 ns	< 10 ns
Program current	n/a	100 µA	0.4 μA	100 µA	zero	n/a
Program energy	> 1fJ	2 pJ	1 fJ	4 pJ	~ 50 aJ	2 fJ
Read voltage	0.1-0.5 V	3 V	0.2 V	0.5 V	< 0.1 V	1.5 V
Read time	15-50 µs	60 ns	10 ns	10-20 ns	< 0.1 ns	< 10 ns
Endurance	10 ⁴ -10 ⁵	10 ¹⁵	10 ¹⁶	2×10 ¹² @10ns 2×10 ⁶ @10ms	>10 ¹⁶	N/A

 NV-NEMory technology offers much lower programming energy per bit and fast read access time as compared with other NVM technologies.